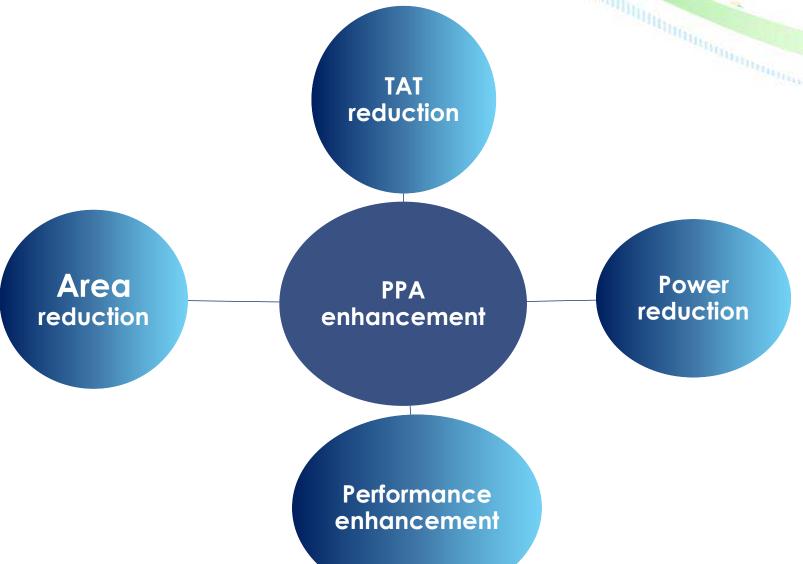
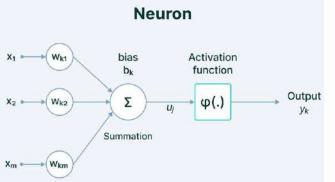


About

- Advanced Datapath Architectures
- Low power Al design
- Library
- Methodologies and tools

- Two granted Patents
- Silicon efficiency far beyond that can be achieved
- Without verification overhead
- Without impacting current design methodologies





Challenges Addressed

Al chips, also known as Al accelerators or Al processors, are specialized hardware designed to efficiently perform the computations required for artificial intelligence tasks such as machine learning and deep learning.

These chips are optimized for the specific computational patterns and algorithms commonly used in AI workloads, enabling faster and more energy-efficient processing compared to traditional CPUs or GPUs.

Neural Network Cores: The heart of the Al chip, consisting of specialized processing units optimized for matrix multiplication operations, which are fundamental to neural network computations. These cores execute the neural network layers and perform calculations in parallel.

Challenges in Al

Complex and resource intensive

Power consumption

Latency is a significant challenge

Heterogeneity

Varying levels of computational resources and memory bandwidth complex engineering

Power Efficiency

A critical consideration in AI chips, particularly in mobile and edge computing devices where energy efficiency is essential.

Memory Bandwidth

Essential for maintaining performance and efficiency

Al Algorithms Complexity of

Challenges Addressed

Innovative design techniques and optimizations at all abstraction levels.

Collaboration between researchers, engineers, and industry stakeholders to develop innovative solutions.

Balancing high performance with low power consumption

Banashree addresses all the Al challenges Best practices for designing, manufacturing, and deploying

Standard Cell Libraries – Convenience has come with a cost!

- Limited and legacy architectures used in standard cells
- Not context aware of Applications & Domains
- Primarily focused on Time to Market and meeting Timing
- Interconnect power has become more predominant than cell power

Current Low Power Methodology is based on:

- Exploring different drive strength cells.
- By reducing supply (Vdd) & cut-in voltages (Vt).
- By using different materials with different di-electric.
- Swapping low-Vt cells with high-Vt cells: to reduce leakage power (after timing closure)

Current EDA Tools are based on Delay optimization rather than PPA & TAT

• The industry tools focus on timing betterment.

Unique Value Proposition

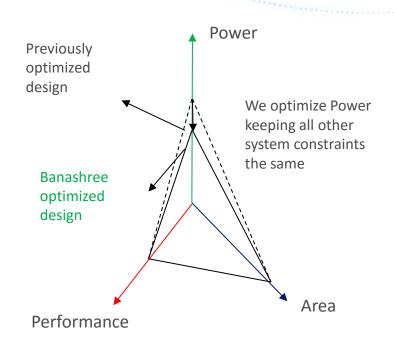
Optimal PPA with minimal TAT

• Up to 25%

EDA TOOL: ARCEL

Architecture Selection Tool

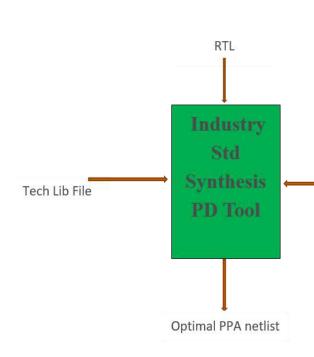
Custom Library


- Low Power standard cell library
- Design custom library cells that can optimize the power further by mapping the design to these new standard cell elements

IPs

• AI, IOT, ML, GPU, DSP

Advantages

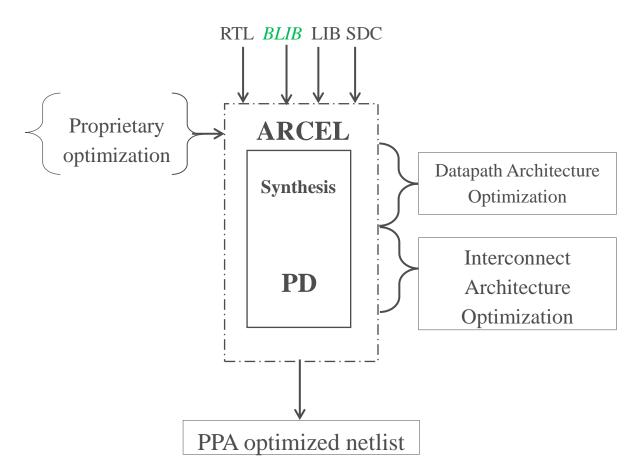

Enables to achieve OPTIMAL PPA with reduced TAT

ARCEL EDA Tool

ARCEL EDA TOOL

- ARCEL Guides Synthesis & PD Tool, based upon the AI design constraints & library, to select best possible Architecture & Std Cells for given Design, Library & Constraints to achieve Optimal Power Performance Area (PPA) & reduced TAT.
- Vendor, Technology Node, Domain, Application & Design agnostic.

Constraints


- Enables plethora of New Optimization Corners
- ARCEL analyzes the QOR of the synthesis process to check whether synthesis tool has chosen right architecture & Std Cells (optimal PPA).

• Post Processing:

Based on whether the required constraints are met, it will apply Advanced Optimization Algorithms.

ARCEL EDA Tool

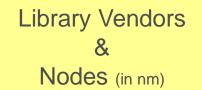
Advantages

- Most Optimal PPA
 - Simpler Datapath Architecture at Synthesis Phase
 - Simpler Interconnect Architecture at PD Phase
- Reduced Design Cycle Time (due to faster run time)
 - Faster Synthesis
 - Faster PD due to less Routing Congestion
- No Verification Overhead
- Reduced Interconnect Area, Delay & Power
- Reduced Power (both DP & LP) at Synthesis level itself
- Simple to Implement
- Scalable Solution

Custom Library and Benefits

Custom Library

- Custom Library (with custom data path standard cells complimenting existing library).
- Low Power standard cell library Banashree has designed custom library cells that can optimize the power further, by mapping the Al design to these new standard cell elements.
- Embedded isolation of Sum & Carry paths.
 - Context Specific, Inverter elimination, Minimal Level,
 Interconnect (Routing & Congestion) aware Architectures.
- Simple Plug & Play solution.
- Min Verification Overhead.


Benefits

- .lib of New Custom Library Cells will be back annotated to Synthesis Flow.
- Within one synthesis run, the customer will see the PPA enhancement in their actual design & environment.
- Proprietary architectures are provided for further enhancement of PPA.

Our Demonstrations

Across different Nodes, Fabs, EDA Vendors, Domains & Technologies

40,28

synopsys 40,28

Domains & Designs

EDA Tools

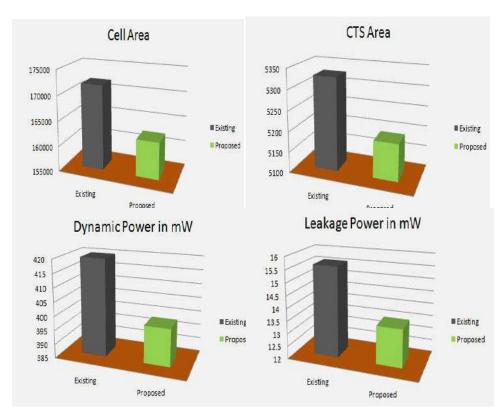
Technologies

Results

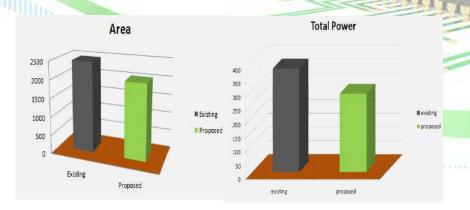
Component	TSMC	Optimized	% Gain
XOR2D1	A = 1.1 sq units	A = 0.88 sq units	A=-12.5
	T = 0.035 ns	T = 0.021 ns	T=40
	CIP = 36.;2 nW	CIP = 19.2 nW	CIP = 47.5
	NSP= 11.2nW	NSP= 16.4 nW	
	DP = 47.5 nW	DP = 35.6 nW	DP= 24.95
	CLP= 0.102 nW	CLP= 0.054 nW	CLP= 46.51
XNOR2D1	A = 1.1 sq units	A = 0.88 sq units	A=12.5
	T = 0.033 ns	T = 0.021 ns	T=-36
	CIP = 38.7 nW	CIP = 19.5 nW	CIP = 49.5
	NSP= 10.5 nW	NSP= 16.4 nW	
	DP = 49.3 nW	DP = 41.8 nW	DP=67.5
	CLP= 0.10 nW	CLP= 0.053 nW	CLP=163.3
AH01D1	A = 1.683 sq units	A = 1.386	A= 2.2
	T Sum = 0.38 ns	T Sum = 0.2 ns	T= 34.5
	T Carry = 0.17 ns	T Carry = 0.22 ns	
	CIP = 57.1 nW	CIP = 32.9 nW	
	NSP = 19.0 nW	NSP = 21.0 uW	
	DP = 76.3 nW	DP = 31.0394 uW	
	CLP = 0.163 nw	CLP = 1.6521 uW	DP= 11.9
			CLP= 18.8
AD01D1	A = 588.96	A = 540.36	A= 8.9
	T = 2.06 ns	T = 2.06 ns	T= 0
	CIP = 116.8271 uW	CIP = 98.5750uW	
	NSP = 28.1215 uW	NSP=31.3773 uW	
	DP = 144.9486 uW	DP =129.9524uW	DP= 11.6
	CLP = 7.8342 uW	CLP= 6.4654 uW	CLP= 20

Note:

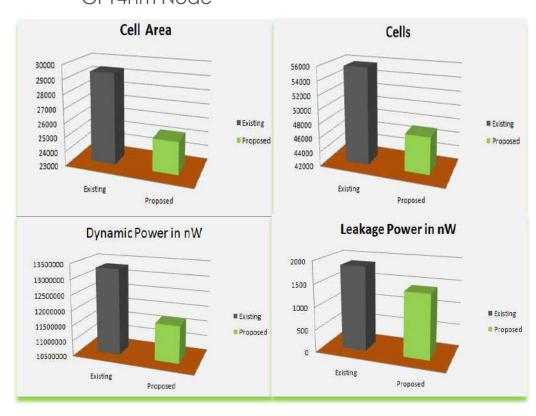
CIP = Cell Internal Power. NSP = Net Switching Power. DP = Dynamic Power CLP = Cell Leakage Power. Leading 28-nm Tech Node



CUSTOMER 1: DATAPATH INTENSIVE DESIGN


TSMC28nm post Synthesis

CUSTOMER 3: CONTROL PATH INTENSIVE DESIGN


TSMC16nm Node, post PD Signoff

Customer Wins

CUSTOMER 2: ANDES PROCESSORGF14nm Node

Power Optimization - Case Studies

				Seattle Comments of the Commen		
Sl. No.	Design	Activity	Technology	Power, Design Metrics (Taped out)	Power, Design Metrics (Improvised	% Improvement
1	ANDES Processor	Power Optimization done using Taped out Synthesis netlist.	GF 14nm	Cells: 55747 Cell Area: 29.3 Sq.mm Critical Timing path in ns: 0.66 Leakage Power (nw): 1866 Dynamic Power (nw): 13311519	Cells: 47211 Cell Area: 25.2 Sq.mm Critical Timing path in ns: 0.66 Leakage Power (nw): 1417 Dynamic Power (nw): 11709605	Cells: 15.3 Cell Area: 13.9 Critical Timing path in ns: 0 Leakage Power (nw): 24 Dynamic Power (nw): 12
2	Sifive RISC – V process or	Power Optimization done using Synthesis netlist.	TSMC 16nm	Die Area: 22.5 Sq.mm CTS Power: 1.5 mW Total Power: 2.903 mW	Die Area: 14.4 Sq.mm CTS Power: 1.4 mW Total Power: 2.825 mW	Die Area: 36 CTS Power: 6.7 Total Power: 2.7
3	Sifive RISC - V process or	Power Optimization done using Synthesis netlist.	Lowest Stable Node	Die Area: 7.969 Sq.mm WNS: -0.057 ns TNS: -3.3 ns CTS Power: 0.461 mW Total Power: 2.264 mW	Die Area: 7.969 Sq.mm WNS: -0.029 ns TNS: -0.2 ns CTS Power: 0.417 mW Total Power: 2.159 mW	Die Area: 0% CTS Power: 9.5 Total Power: 4.6

Area Optimization - Case Studies

Sl. No.	Design	Activity	Technology	Power, Design Metrics (Taped out)	Power, Design Metrics (Improvised)	% Improvement
4	DSP ASIC	Area Optimization done using Synthesis netlist.	TSMC 28nm	Std Cell Area: 3.41 Sq.mm CTS Power: Total Power:	Std Cell Area: 3. 32 mm2 CTS Power: 1.4 mW Total Power: 2.825 mW	Die Area : 2.6 CTS Power : Total Power :
5	Networking ASIC	Area Optimization done using Synthesis netlist.	Lowest Stable Node	Std Cell Area: 3.866 Sq.mm WNS: 0.074 ns TNS: 9 CTS Power: Total Power:	Die Area: 3.79404 mm2 WNS: 0.105 ns TNS: 9 CTS Power: Total Power:	Die Area : 1.8 CTS Power : Total Power :

Expectations

- Theoretical Demonstration
- PDK Access
- Custom Lib development
- PPA enhancement demonstration
- Flow Optimization based on new Custom Cells
- Replicating to other Nodes
- Commercial Models
 - Consulting for Evaluation
 - IP Licensing per design per node basis

THANK YOU